
Международна научна конференция “УНИТЕХ’10” – Габрово

‘

10

INTERNATIONAL SCIENTIFIC CONFERENCE
19 – 20 November 2010, GABROVO

FPGA IMPLEMENTATION OF THROUGHPUT INCREASING
TECHNIQUES OF THE BINARY DIVIDERS

Bojan Jovanovic

Faculty of Electronic Engineering, University of Nis, Serbia

Milun Jevtic
Faculty of Electronic Engineering, University of Nis, Serbia

Abstract

This paper deals with the binary dividers. A few different binary division algorithms are realized along with well
known techniques for throughput increasing. Dividers are described in VHDL hardware description language and
implemented in Altera and Xilinx FPGA devices. After classification of the binary division algorithms, radix-2 restoring
and radix-2 non-restoring algorithms are described with more details. The techniques for speed increasing (parallelism
and pipelining) are applied after. All architectures are finally implemented in FPGA device and their comparison was
done from the standpoint of speed and size (percentage of FPGA resources).

Keywords: FPGA, VHDL, binary division algorithms

INTRODUCTION
 Division is the most complex of the four
basic arithmetic operations. Because hardware
solutions are correspondingly larger and more
complex than the solutions for other
operations, it is best to minimize the number
of divisions in any algorithm. On the other
hand, division is the common part of many
algorithms of great practical value (digital
signal and image processing [1], Levinson-
Durbin algorithm in LPC speech coder, robot
control etc.). Therefore, binary dividers must
be treated with careful. Division operands can
be signed or unsigned numbers, integer or
fractionals, with fixed or floating point.
Equations (1) and (2) are basic division
equations.

x = y*qt + rem (1)

x = y*qt. rem (2)

By dividing number x with number y we get
quotient qt and division remainder rem.
Equation (1) remainder is integer number less
than y while equation (2) remainder is less
than 1. If dividend x is presented with M bits
and divisor y with N bits, for quotient qt will
be necessary M bits while remainder rem

needs N bits. Figure 1 presents basic division
algorithms [3].

Fig. 1. Basic division algorithms

Radix-2 algorithms generate one quotient bit
by division sequence while High-radix
algorithms generate more. Here presented
dividers use 12 bits wide signed integer
operands (in the range [-2048, 2047]) and
belong in the group of sequential dividers.
Below we consider radix-2 restoring and
radix-2 non-restoring (regular) algorithms.

EXPOSITION
Radix-2 restoring divider

Figure 2 shows simplified block diagram of
radix-2 restoring division. Division process
can be described as follows:
Put divider x in register A, dividend y in
register B, reset register P. Perform M divide

Международна научна конференция “УНИТЕХ’10” – Габрово

steps (M is the number of bits for dividend x
presentation):

 Shift the register pair (P,A) one bit left
 Subtract the content of B from P, put

the result back in P
 If the result is negative, set the lsb bit

of A to 0, otherwise to 1
 If the result is negative, restore the old

value of P by adding the contents of B
back in P

Fig. 2. Radix-2 restoring division

After M steps, the register A will contain the
quotient while the content of the register P will
be equel to remainder. For implementation of
this division algorithm some additional logic
for controlling divison process as well as the
clock signal for synchronization would be
necessary. Detailed logic circuit of sequential
radix-2 restoring divider is shown in Figure 3.

adder

S
ffo

ut

Fig. 3. Detailed logic circuit of radix-2 restoring

divider

At the division beginning we get absolute
value of dividend x, negative value of divisor y
and reset the counter and Pbckup register.
Then we store Xabs in register A and reset
register P. On the rising edge of the clock
signal clk1 shifting in registers A and P is
performed. After shifting, the value of divisor
y is subtracted from the content of register P
(this is done by adding the negative value of
divisor – yneg to the content of register P). On

the clk1 falling edge the result of addition is
stored in register Pbckup. If the result of
addition is greater than zero signal enP is
activated and the content of register Pbckup is
stored into register P. On the RS flip-flop s
input we have the msb bit from the adder
output so that the output of this flip-flop
(Sffout) controls register’s A lsb bit. The
counter makes sure that shifting is performed
M times (M is the number of bits needed for
dividend x presentation). At the end of division
process quotient and remainder will always be
positive (that’s because we got the absolute
value of dividend x as an input in the division
process). The real values of the quotient and
remainder are on the outputs of inverters with
control (at the bottom of the logic circuit from
Figure 3). Since the sing of remainder directly
depends on dividend sign (if dividend is
positive remainder is also positive and vice
versa), we get divider msb bit on control input
of the inverter which determines remainder.
Quotient will be negative if dividend and
divisor are of opposite sign (one positive
another negative – xor operation).

Radix-2 non-restoring division

Radix-2 non-restoring division of dividend
x (M bits) with divisor y (N bits) can be
described with the following program
sequence [4]:
D := |Y |; RM := X;
for j := M − 1 downto 0 do
 if Rj+1 = 0 then do
 Q := [qM−1qM−2 · · · qj+10 · · · 0]; Rem := 0;
 go to label;
 endif;
 if Rj+1 < 0 then
 qj := −1 else
 qj := 1
 endif;
Rj := Rj+1 − qj · 2 j · D;
endfor;
Q := [qM−1qM−2 · · · q0];
if X >0 and R0 < 0 then
 Rem := R0 + D; Q := Q − 1;
 elseif X <0 and R0 > 0 then
 Rem:= R0 −D; Q := Q+1;
 else Rem := R0;
endif;
label: if Y <0 then Qt := −Q else Qt := Q endif;

With every run through for loop one bit of
quotient is generated (starting from the msb

Международна научна конференция “УНИТЕХ’10” – Габрово

bit). There are maximally M runs through for
loop. In the case when remainder is equal to
zero for loop runs less than M times. In the jth
loop run the value of Rj is calculated while
quotient bit value qj depends on Rj+1 value
calculated in the previous loop run. Figure 4
shows the logic circuit of radix-2 non-restoring
divider.

M

Fig. 4. Detailed logic circuit of radix-2 non-

restoring divider

Firstly, absolute values of divider and divisor
are determined. With such values division
process is started. As a consequence, quotient
and remainder will always be the positive
numbers. To get quotient and remainder real
values two inverters with control input are
used (at the bottom of the logic circuit). Radix-
2 non-restoring logic circuit comprise of
adders and multiplexers array. The number of
adders and multiplexers is determined by the
number of dividend’s bits while its size (the
number of input bits) is determined by the
number of divisor’s bits. The msb bit on each
adder output determines one quotient bit (first
adder output determines quotient msb bit) as
well as multiplexer select input. Output of the
last adder represents division remainder.

Parallelism and pipelining

The throughput of some logic design is
determined by its critical path. The critical
path is the path between two points in the
design which are interconnected. We call it
critical because it has the longest signal
propagation time, longer than any other design

path. If tcp represents signal propagation time
of the critical path, maximal design throughput
is determined with the following equation:

 fmax ≈ 1/tcp (3)

Parallelism and pipelining are well known
techniques for the design throughput
increasing [5]. Figure 5 shows some reference
design and its parallel and pipelined versions.

Fig. 5. Micro-architecture example: a) reference

design, b)parallel design, c) pipeline design

Parallelism is actually simple design
reproduction. The number of design
reproduction depends on parallelism stage.
Each design reproduction process the part of
input data which leads to throughput
increasing or design relief (when the
throughput is not increased). On the Figure
5(b) half of the input data are processed with
one design reproduction. The other half of the
input data are processed with other design
reproduction. After data processing, the results
are alternatively passed to the output using one
multiplexer. Parallelism does not affect the
reduction of the design critical path. Design
throughput increasing is the consequence of
the fact that design functions run parallel and
independently on two (or more) different
design reproductions. This is described with
equation (4)

 fmax ≈ k/tcp (4)

wher constant k represents parallelism stage.
Pipelining is the technique which uses pipeline
registers on the suitable points in the design to
accept the wave of input data which flows to
the design output. When data are stored in
pipeline registers it is now possible to accept
new wave of design input data. This is
illustrated on Figure 6.

Международна научна конференция “УНИТЕХ’10” – Габрово

Fig. 6. The illustration of stage 2 pipelining

Pipeline technique can not be applied on every
logic design. This technique increases the
throughput by reducing the length of the
critical path in the design. Pipelining drawback
is increased design latency.
Parallelism technique (stage 2) is applied on
both previously described division algorithms
while pipelining technique (stage 2 and 4) is
applied only on radix-2 non-restoring division
algorithm. Figure 7 shows the implementation
of the stage 2 pipeline technique. Critical paths
before and after pipelining implementation are
also presented.

Inv

Xa

Inv

Ya

Inv
Yn

Y

+

Yn&Xa(10)Ya
13

MSBadd1

add1&Xa(9)

+

MSBadd1 01

qp(10)

MSBadd2

add2&Xa(8)

+

MSBadd2 01

qp(9)

Ya Yn

MSBadd3

add3&Xa(7)

MSBadd3 01

qp(8)

+

MSBadd4 01

MSBadd5

add5&Xa(5)

+

MSBadd5 01

qp(6)

MSBadd11

add11

+

0

MSBadd11 01

qp(0)

qp(11)=0

Inv

Remainder

ctrlMSBXr
Inv

Quotient

qp
ctrl

MSBXr

12MSBYr

12

X Y

ctrl ctrl ctrlMSBX MSBY MSBY 13

1313 13

13 13

12 12

12

13

N

12

12

13

13

13 13

13

13

13

13 13

13

13 13

13

13

13
add4&Xa(6)

12

12

12

12

12

12

Ya Yn

Ya Yn

Ya Yn

Ya Yn

Ya

+
MSBadd4 qp(7)

MSBadd6

add6&Xa(4)

+

MSBadd6 01

qp(5)13 13

13

13
Ya Yn

MSBadd7

add7&Xa(3)

+

MSBadd7 01

qp(4)13 13

13

13
Ya Yn

MSBadd8

add8&Xa(2)

+

MSBadd8 01

qp(3)13 13

13

13
Ya Yn

MSBadd9

add9&Xa(1)

+

MSBadd9 01

qp(2)13 13

13

13
Ya Yn

MSBadd10

add10&Xa(0)

+

MSBadd10 01

qp(1)13 13

13

13
Ya Yn

critical path without
pipelining

critical path with
pipelining

pipeline register

pipeline register

Fig. 7. Stage 2 pipeline implementation

From the figure 7 can be seen that critical path
after pipelining stage 2 implementation is
twice shorter. Blue lines on figure 7 represent
pipeline registers. Stage 4 pipelining technique
is similarly implemented. It consists of more
pipelining registers and, as a consequence, the
critical path is even shorter.

FPGA implementation

Both previously described division algorithms,
along with all throughput increasing
techniques are described in VHDL hardware
description language. All described designs are
implemented in Altera EP2C35F672C6 FPGA
device from CycloneII family and in Xilinx
XC3S500E FPGA device from Spartan3E
family. Tables I and II show the
implementation results.

Table I. Altera CycloneII implementation results

Altera Cyclone II Total Logic
Elements

fmax
[MHz]

Radix-2 non-restoring

Reference design 532/33216 (2%) 11.89

Parallel 2 1075/33216 (3%) 19.53

Pipeline 2 528/33216 (2%) 24.1

Pipeline 4 538/33216 (2%) 46.05

Radix-2 restoring

Reference design 204/33216 (<1%) 2.3

Parallel 2 428/33216 (1%) 4.76

QuartII IP core divider 250/33216 (<1%) 29.16

Tables also contain the implementation results
of divider IP (Intellectual Property) cores
which are specially adapted (from the
standpoint of throughput and size) to the
FPGA device they implement in. It is naturally
to expect that these IP dividers have the best
throughput/size ratio.

Table II. Xilinx Spartan3E implementation results

Xilinx Spartan 3E No of Occupied
Slices

fmax
[MHz]

Radix-2 non-restoring

Reference design 302/4656 (6%) 18.81

Parallel 2 521/4656 (11%) 27.36

Pipeline 2 425/4656 (9%) 31.86

Pipeline 4 447/4656 (9%) 53.77

Radix-2 restoring

Reference design 101/4656 (2%) 6.27

Parallel 2 229/4656 (1%) 12.63

ISE11.1 IP core divider 291/4656 (6%) 37.28

Международна научна конференция “УНИТЕХ’10” – Габрово

Comparing to the reference design (either
restoring or non-restoring) the implementation
of stage 2 parallelism leads to twice (roughly)
increase in the design throughput. The design
size is also twice increased so throughput/size
ratio is not significantly changed.
Implementing pipelining, however, at the cost
of slight increase in size we get significant
throughput increasing (depending on pipeline
stage). Therefore, can be concluded that the
pipelining is an effective means to increase the
divider throughput, more efficient than
parallelism.

CONCLUSION

This paper presents two binary division
algorithms. Throughput increasing techniques
are also described. Pipelining technique has
proven to be more efficient because at the cost
of slight increase in design size (relative to the
reference design) significantly increases its
throughput. Parallelism technique equally
increase both, design size and its throughput.
The ratio throughput/size is not significantly
changed (relative to the reference design), so
parallelism technique is considered less
efficient. In the future studies divider power
consumption will be considered. It is
necessary to examine how throughput

increasing techniques impact divider power
consumption. With the trend of power
consumption reduction it is important to
consider the tradeoffs between divider
throughput and its power consumption. This is
particularly important in ASIC design –
custom design based on a library of basic
digital circuits of selected technology.

REFERENCE
[1] L. O’Goroman, M. Sammon, and M. Seul,

“Practical algorithms for image analysis,”
Cambridge University Press, New York, 2008.

[2] J.D. Gordy, R.A. Goubran, “A combined LPC
based speech coder and filtered-X LMS
algorithm for acoustic echo cancellation,” IEEE
Conf. on Acoustic, Speech and Signal
Processing, 17-21. May 2004., vol. 4., pp. 125-
128.

[3] B. Pahrami, “Computer Arithmetic: Algorithms
and Hardware Design,” Oxford University
Press, Oxford 1999.

[4] N. Takagi, S. Kadowaki, and K. Takagi, “A
Hardware Algorithm for Integer division,” 17th
IEEE Symposium on Computer Arithmetic, 27-
29. June 2005., pp. 140-146

[5] S.S. Jadhov, “Advanced Computer Arithmetic
and Computing,” Technical Publications Pune,
2009.

