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Abstract 

This paper deals with the binary dividers. A few different binary division algorithms are realized along with well 
known techniques for throughput increasing. Dividers are described in VHDL hardware description language and 
implemented in Altera and Xilinx FPGA devices. After classification of the binary division algorithms, radix-2 restoring 
and radix-2 non-restoring algorithms are described with more details. The techniques for speed increasing (parallelism 
and pipelining) are applied after. All architectures are finally implemented in FPGA device and their comparison was 
done from the standpoint of speed and size (percentage of FPGA resources). 
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INTRODUCTION 
    Division is the most complex of the four 
basic arithmetic operations. Because hardware 
solutions are correspondingly larger and more 
complex than the solutions for other 
operations, it is best to minimize the number 
of divisions in any algorithm. On the other 
hand, division is the common part of many 
algorithms of great practical value (digital 
signal and image processing [1], Levinson-
Durbin algorithm in LPC speech coder, robot 
control etc.). Therefore, binary dividers must 
be treated with careful. Division operands can 
be signed or unsigned numbers, integer or 
fractionals, with fixed or floating point. 
Equations (1) and (2) are basic division 
equations.  
 

x = y*qt + rem                                         (1) 
 

x = y*qt. rem                                            (2) 
 
By dividing number x with number y we get 
quotient qt and division remainder rem. 
Equation (1) remainder is integer number less 
than y while equation (2) remainder is less 
than 1. If dividend x is presented with M bits 
and divisor y with N bits, for quotient qt will 
be necessary M bits while remainder rem 

needs N bits. Figure 1 presents basic division 
algorithms [3]. 

 
Fig. 1. Basic division algorithms 

 
Radix-2 algorithms generate one quotient bit 
by division sequence while High-radix 
algorithms generate more. Here presented 
dividers use 12 bits wide signed integer 
operands (in the range [-2048, 2047]) and 
belong in the group of sequential dividers. 
Below we consider radix-2 restoring and 
radix-2 non-restoring (regular) algorithms. 
 
EXPOSITION 
Radix-2 restoring divider 
 

Figure 2 shows simplified block diagram of 
radix-2 restoring division. Division process 
can be described as follows: 
Put divider x in register A, dividend y in 
register B, reset register P. Perform M divide 
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steps (M is the number of bits for dividend x 
presentation): 
 

 Shift the register pair (P,A) one bit left 
 Subtract the content of B from P, put 

the result back in P 
 If the result is negative, set the lsb bit 

of A to 0, otherwise to 1 
 If the result is negative, restore the old 

value of P by adding the contents of B 
back in P 

 
Fig. 2. Radix-2 restoring division 

 
After M steps, the register A will contain the 
quotient while the content of the register P will 
be equel to remainder. For implementation of 
this division algorithm some additional logic 
for controlling divison process as well as the 
clock signal for synchronization would be 
necessary. Detailed logic circuit of sequential 
radix-2 restoring divider is shown in Figure 3. 
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Fig. 3. Detailed logic circuit of radix-2 restoring 

divider 
 

At the division beginning we get absolute 
value of dividend x, negative value of divisor y 
and reset the counter and Pbckup register. 
Then we store Xabs in register A and reset 
register P. On the rising edge of the clock 
signal clk1 shifting in registers A and P is 
performed. After shifting, the value of divisor 
y is subtracted from the content of register P 
(this is done by adding the negative value of 
divisor – yneg to the content of register P). On 

the clk1 falling edge the result of addition is 
stored in register Pbckup. If the result of 
addition is greater than zero signal enP is 
activated and the content of register Pbckup is 
stored into register P. On the RS flip-flop s 
input we have the msb bit from the adder 
output so that the output of this flip-flop 
(Sffout) controls register’s A lsb bit. The 
counter makes sure that shifting is performed 
M times (M is the number of bits needed for 
dividend x presentation). At the end of division 
process quotient and remainder will always be 
positive (that’s because we got the absolute 
value of dividend x as an input in the division 
process). The real values of the quotient and 
remainder are on the outputs of inverters with 
control (at the bottom of the logic circuit from 
Figure 3). Since the sing of remainder directly 
depends on dividend sign (if dividend is 
positive remainder is also positive and vice 
versa), we get divider msb bit on control input 
of the inverter which determines remainder. 
Quotient will be negative if dividend and 
divisor are of opposite sign (one positive 
another negative – xor operation). 
 
Radix-2 non-restoring division 
 

Radix-2 non-restoring division of dividend 
x (M bits) with divisor y (N bits) can be 
described with the following program 
sequence [4]: 
D := |Y |; RM := X; 
for j := M − 1 downto 0 do 
     if Rj+1 = 0 then do 
        Q := [qM−1qM−2 · · · qj+10 · · · 0]; Rem := 0; 
        go to label; 
     endif; 
     if Rj+1 < 0 then 
        qj := −1 else 
        qj := 1 
     endif; 
Rj := Rj+1 − qj · 2 j · D; 
endfor; 
Q := [qM−1qM−2 · · · q0]; 
if X >0 and R0 < 0 then 
  Rem := R0 + D; Q := Q − 1; 
     elseif X <0 and R0 > 0 then 
     Rem:= R0 −D; Q := Q+1; 
     else Rem := R0; 
endif; 
label: if Y <0 then Qt := −Q else Qt := Q endif; 

With every run through for loop one bit of 
quotient is generated (starting from the msb 
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bit). There are maximally M runs through for 
loop. In the case when remainder is equal to 
zero for loop runs less than M times. In the jth 
loop run the value of Rj is calculated while 
quotient bit value qj depends on Rj+1 value 
calculated in the previous loop run. Figure 4 
shows the logic circuit of radix-2 non-restoring 
divider.  

M

 
Fig. 4. Detailed logic circuit of radix-2 non-

restoring divider 
 

Firstly, absolute values of divider and divisor 
are determined. With such values division 
process is started. As a consequence, quotient 
and remainder will always be the positive 
numbers. To get quotient and remainder real 
values two inverters with control input are 
used (at the bottom of the logic circuit). Radix-
2 non-restoring logic circuit comprise of 
adders and multiplexers array. The number of 
adders and multiplexers is determined by the 
number of dividend’s bits while its size (the 
number of input bits) is determined by the 
number of divisor’s bits. The msb bit on each 
adder output determines one quotient bit (first 
adder output determines quotient msb bit) as 
well as multiplexer select input. Output of the 
last adder represents division remainder. 
 
Parallelism and pipelining 
 
The throughput of some logic design is 
determined by its critical path. The critical 
path is the path between two points in the 
design which are interconnected. We call it 
critical because it has the longest signal 
propagation time, longer than any other design 

path. If tcp represents signal propagation time 
of the critical path, maximal design throughput 
is determined with the following equation: 

 
   fmax ≈ 1/tcp                                              (3) 

 
Parallelism and pipelining are well known 
techniques for the design throughput 
increasing [5]. Figure 5 shows some reference 
design and its parallel and pipelined versions. 

 
Fig. 5. Micro-architecture example: a) reference 

design, b)parallel design, c) pipeline design 
 
Parallelism is actually simple design 
reproduction. The number of design 
reproduction depends on parallelism stage. 
Each design reproduction process the part of 
input data which leads to throughput 
increasing or design relief (when the 
throughput is not increased).  On the Figure 
5(b) half of the input data are processed with 
one design reproduction. The other half of the 
input data are processed with other design 
reproduction. After data processing, the results 
are alternatively passed to the output using one 
multiplexer. Parallelism does not affect the 
reduction of the design critical path. Design 
throughput increasing is the consequence of 
the fact that design functions run parallel and 
independently on two (or more) different 
design reproductions. This is described with 
equation (4) 
 

   fmax ≈ k/tcp                                              (4) 
 
wher constant k represents parallelism stage.  
Pipelining is the technique which uses pipeline 
registers on the suitable points in the design to 
accept the wave of input data which flows to 
the design output. When data are stored in 
pipeline registers it is now possible to accept 
new wave of design input data. This is 
illustrated on Figure 6.  
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Fig. 6. The illustration of stage 2 pipelining 

 
Pipeline technique can not be applied on every 
logic design. This technique increases the 
throughput by reducing the length of the 
critical path in the design. Pipelining drawback 
is increased design latency.  
Parallelism technique (stage 2) is applied on 
both previously described division algorithms 
while pipelining technique (stage 2 and 4) is 
applied only on radix-2 non-restoring division 
algorithm. Figure 7 shows the implementation 
of the stage 2 pipeline technique. Critical paths 
before and after pipelining implementation are 
also presented.  
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Fig. 7. Stage 2 pipeline implementation 

 
From the figure 7 can be seen that critical path 
after pipelining stage 2 implementation is 
twice shorter. Blue lines on figure 7 represent 
pipeline registers. Stage 4 pipelining technique 
is similarly implemented. It consists of more 
pipelining registers and, as a consequence, the 
critical path is even shorter.  
 
 
 
 

FPGA implementation 
 
Both previously described division algorithms, 
along with all throughput increasing 
techniques are described in VHDL hardware 
description language. All described designs are 
implemented in Altera EP2C35F672C6 FPGA 
device from CycloneII family and in Xilinx 
XC3S500E FPGA device from Spartan3E 
family. Tables I and II show the 
implementation results.  
 
Table I. Altera CycloneII implementation results 

Altera Cyclone II Total Logic 
Elements 

fmax 
[MHz] 

Radix-2 non-restoring   

Reference design 532/33216  (2%) 11.89 

Parallel 2 1075/33216 (3%) 19.53 

Pipeline 2 528/33216 (2%) 24.1 

Pipeline 4 538/33216 (2%) 46.05 

Radix-2 restoring   

Reference design 204/33216 (<1%) 2.3 

Parallel 2 428/33216 (1%) 4.76 

QuartII IP core divider 250/33216 (<1%) 29.16 

 
Tables also contain the implementation results 
of divider IP (Intellectual Property) cores 
which are specially adapted (from the 
standpoint of throughput and size) to the 
FPGA device they implement in. It is naturally 
to expect that these IP dividers have the best 
throughput/size ratio. 
 
Table II. Xilinx Spartan3E implementation results 

Xilinx Spartan 3E No of Occupied 
Slices 

fmax 
[MHz] 

Radix-2 non-restoring   

Reference design 302/4656  (6%) 18.81 

Parallel 2 521/4656 (11%) 27.36 

Pipeline 2 425/4656 (9%) 31.86 

Pipeline 4 447/4656 (9%) 53.77 

Radix-2 restoring   

Reference design 101/4656 (2%) 6.27 

Parallel 2 229/4656 (1%) 12.63 

ISE11.1 IP core divider 291/4656 (6%) 37.28 
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Comparing to the reference design (either 
restoring or non-restoring) the implementation 
of stage 2 parallelism leads to twice (roughly) 
increase in the design throughput. The design 
size is also twice increased so throughput/size 
ratio is not significantly changed. 
Implementing pipelining, however, at the cost 
of slight increase in size we get significant 
throughput increasing (depending on pipeline 
stage). Therefore, can be concluded that the 
pipelining is an effective means to increase the 
divider throughput, more efficient than 
parallelism.  
 
CONCLUSION 

This paper presents two binary division 
algorithms. Throughput increasing techniques 
are also described. Pipelining technique has 
proven to be more efficient because at the cost 
of slight increase in design size (relative to the 
reference design) significantly increases its 
throughput. Parallelism technique equally 
increase both, design size and its throughput. 
The ratio throughput/size is not significantly 
changed (relative to the reference design), so 
parallelism technique is considered less 
efficient. In the future studies divider power 
consumption will be considered. It is 
necessary to examine how throughput 

increasing techniques impact divider power 
consumption. With the trend of power 
consumption reduction it is important to 
consider the tradeoffs between divider 
throughput and its power consumption. This is 
particularly important in ASIC design – 
custom design based on a library of basic 
digital circuits of selected technology. 
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